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E. R. Berlekamp has developed for the Jet Propulsion Laboratory a bit-serial
multiplication algorithm for the encoding of Reed-Solomon {RS) codes, using a dual basis
over u Galois field. The conventional RS-encoder for long codes often requires look-up
tables to perform the multiplication of two field elements. Berlekamp’s algorithm
requires only shifting and exclusive-OR operations. It is shown in this paper that the new
dual-basis (255, 223) RS-encoder can be realized readily on a single VLSI chip with

NMOS technology.

l. Introduction

A concatenated Reed-Solomon/Viterbi channel encoding
system has been suggested both by the Furopean Space

Agency (ESA) (Ref. 1) and JPL (Refs. 2, 3) for the deep-space-

downlink. The standard RS-encoder design developed by JPL
assumes the following codes and parameters.

Let GF(2™) be a finite field. Then an RS code is a sequence
of the symbols in GF(2™). This sequence of symbols can be
considered to be the coefficients of a polynomial. The code
polynomial of such a code is

it S
Cx) = Z cx’ ¢))
=0
whnere ¢; € GF(2™).
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The parameters of an RS code are summarized as follows:

m = number of bits per symbol
n = 2m - 1 = the length of a codeword in symbols
¢t = maximum number of error symbols that can be cor-
rected
d = 2t + 1 = design distance

2t = number of check symbols

k = n- 2t =number of information symbols

In the JPL design, m =8, n=255,¢=16,d=33,2t=32,and
k = 223. This code is the (255, 223) RS code.




The generator polynomial of an RS code is defined by

bt2t-1

2t
)=y o= gx @)
j=b i=0

where b is a nonnegative integer, usually chosen to be 1, and vy
is a primitive element in GF(2™), In order to reduce the com-
plexity of the encoder it is desirable to make the coefficients
of g(x) symmetric so that g(x) = x~9-1 g(1/x). To accomplish
this » must be chosen to satisfy 2b +d - 2 =27 - 1, Thus for
the JPL code b = 112.

Let I(x) =‘02,x2’ t ey X2+ ke, x" L and P(x) =
cg teyx + 4y, X271 be the information polynomial
and the check polynomial, respectively. Then the encoded RS
code polynomial is represented by

Clx) = I(x) + P(x) 3)

To be an RS code C(x) must be also a multiple of g(x). That is,

Cx) = q(x)a(x) )

To find P(x) in Eq. (3) such that Eq.(4) is true, divide /(x)
by g(x). The division algorithm yields

I(x) = q(x)gCx) + r(x) &)

Also let #(x) = -P(x), then by Eq. (5)

q(x)g(x) = 1(x) - r(x) =I(x) + P(x) =C(x) ©

Figure 1 shows the structure of a f-error correcting RS
encoder over GF(2™). In Fig. 1 R; for 0 <<i<2¢- 1 and Q are
m-bit registers. Initally all registers are set to zero, and both
switches (conirolled by a control signal SL) are set to posi-
tion A.

The information symbols ¢,_,, **, c,, are fed into the
division circuit of the encoder and also transmitted out of the
encoder one by one. The quotient coefficients are generated
and loaded into Q register sequentially. The remainder coeffi-
cients are computed successively. Immediately after c,, is fed
to the circuit, both switches are set to position B. At the very
same moment ¢,, , is computed and transmitted. Simulta-
neously, ¢; is being computed and loaded into register R, for
0<i<2t- 2. Nextc,,,,",cyare transmitted out of the
encoder one by one. ¢,, ,, ' * *, ¢, retain their values because
the content of @ is set to zero when the upper switch is at
position B.

The complexity of the design of an RS encoder results from
the computation of products zg; for 0 < i < 2¢ - 2. These
computations can be performed in several ways (Ref. 3).
Unfortunately none of them is suited to the pipeline pro-
cessing structures usually seen in VLSI design. Recently,
Berlekamp (Ref. 4) developed a bit-serial multiplier algorithm
that has the features needed to solve this problem. Perlman
and Lee (Ref. 5) show in detail the mathematical basis for
this algorithm. In this paper Berlekamp’s method is applied
to the VLSI design of a (255, 223) RS-encoder, which can be’
implemented on a single VLSI chip.

Il. Berlekamp’s Bit-Serial Multiplier
Algorithm Over GF (2m)

In order to understand Berlekamp’s multiplier algorithm
some mathematical preliminaries are needed. Toward this end
the mathematical concepts of the trace and a complementary
(or dual) basis are introduced. For more details and proofs see
Refs. 3,4 and 5.

Definition 1: The trace of an element f belonging to
GF(p™), the Galois field of P elements, is defined as follows:

m—1
e = Y, #°
k=0

In particular, for p = 2,
m-1 k
@ = 3 6>
k=0

The trace has the following properties

(1) [Tr@1° =g+ 6 + -+ P = Tv(B), where f ¢
GF(p™). This implies that Tr(8) € GF(p); i.e., the trace
is on the ground field GF(p).

2) Tr+r)=Tr(B) + Tr(r), where B, ¥ € GF(p™)
(3) TH(cP) = cTr(B), where ¢ € GF(p).
@) Tr(1)=m(mod p).

Definition 2: A basis {u;} in GF(p™) is a set of m linearly
independent elements in GF(p").

Definition 3: Two bases {uj} and {N\;} are said to be com-
plementary or the dual of one another if

1,ifj=%

Tr(u;N,) =
0, j#k
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The basis {uj} is called the original basis, and the basis {A;} is
called the dual basis.

Lemma: If o is a root of an irreducible polynomial of
degree m in GF(p™), then {a¥} for 0 <k <m - 1isa basis of
GFE(p™). The basis {a*} for 0 <k <m - 1 is called the normal
or natural basis of GF(p™).

Theorem 1 (Theorem 19 in Ref, 4): Every basis has a
complementary basis.

Corollary 1: Supposes the bases {, ]} and {}\_k} are comple-
mentary. Then 3 ﬁeld element z can be expressed in the dual

basis {A,} by the expansion

3

m-

-1
= Z Zihe = Z Trizm Iy
k=0 k=0
where z, = Tr(zu, ) is the kth coefficient of the dual basis.
Proof: Let z = zo?\o + 217\1 LR zm_l?\ _ 1+ Multiply

both sides by a¥ and take the trace. Then by 3ef. 3 and the
properties of the trace,

m-1
Tr(za®) = Tr <Z zi(kipk)) = Q.ED.

i=0

The following corollary is an immediate consequence of
Corollary 1.

Corollary 2: The product w = zy of two field elements in
GF(p™) can be expressed in the dual basis by the expansion

m-1
= Z Tr(zyu N,
k=0
where Tr(zyuy) is the kth coefficient of the dual basis for the

product of two field elements.

These two corollaries provide a theoretical basis for the new
RS-encoder algorithm.

ll. A Simple Example of Berlekamp’s
Algorithm Applied to an RS-Encoder

This section follows the treatment in Ref. 3. It is included

here for two purposes. First, Ref. 3 is not readily available for
most readers. Second, this example is included to illustrate
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how Berlekamp’s new bit-serial multiplier algorithm can be
used to realize the RS-encoder structure presented in Fig. 1.

Consider a (15, 11) RS code over GF(2%), For this code, m
=4, n=15,1t=2,d=2t+1=5,and n- 2¢ =11 information
symbols. Let a« be a root of the primitive irreducible
polynomial f(x) = x* + x + 1 over GF(2). « satisfies o'® = 1.
An element z in GF(2*) is representable by 0 or o/ for some /,
0 <j < 14. z can be represented also by a polynomial in a over
GF(2). This is the representation of GF(2*) in the normal
basis {o%} for 0 <k <3.Thatis,z=uy +u a+u,e® +ue
where u, € GF(2) for 0 <k <3.

In Table 1, the first column is the index or logarithm of an
element in base a. The logarithm of the zero element is
denoted by an asterisk. Columns 2 to 5 show the 4-tuples of
the coefficients of the elements expressed as polynomials.

The trace of an element z in GF(2%) is found by Def. 1 and
the properties of the trace to be
= ) 3
TR(z) = uyTr(1) +u, Tr(o) + u, Tr(a”) + u,Tr(a”)
where Tr(1) = 4 (mod 2) = o Tr(a) Tr(e*) =a+a® +o +
a® =0 and Tr(a®) = & + a® +o +a'? = 1. Thus Tr(z) = u,

The trace element o in GF(2%) is listed in column 3 of
Table 1.

By Def. 2 any set of four linearly independent elements can
be used as a basis for the field GF(2%). To find the dual basis
of the normal basis {¢/} in GF (24) let a field element z be
expressed in dual basis {7\ 1’ 2, A } From Corollary 1 the
coefficients of z are z, Tr(zoz") for 0 <k <3. Thus Zo
Tr(2), z, = Tr(ze), z, = ﬂ(zaz) and z, =Tr(za3). Let z =
for some LOSIS 14 Thus a coefﬁment 7, for0<k <3, of
an element z in the dual space can be obtained by cyclicaily
shifting the trace column in Table 1 upward by % positions
where the first row is excluded. These appropriately shifted
columns of coefficients are shown in Table 1 as the last four
columns. In Table 1 the elements of the dual ba51s, Ags 7\1 R 7\2,
A5, are underlined. Evidently ?\0 = o4 A= o? s A, =aand Ay
= 1 are the four elements of the dual bas1s

In order to make the generator polynomialg(x) symmetric
b must satisfy the equation 2b +d - 2=2" - 1. Thus » =6
for this code. The vy in Eq. (2) can be any primitive element in
GF(2%). 1t will be shown in Section IV that y can be chosen to
simplify the binary mapping matrix. In this example let v = a.
Thus the generator polynomial is given by

9 4
g@) = [ @-o) =2 g )
j=6 i=0




where g, =g, = 1,8, =g, =a’ and g, =a.

Let g, be expressed in the normal basis {1, &, &2, a3}. Let z,
a field element, be expressed in the dual bas1s ie,z=z ?\0 +
z, A tz,A, + 2 A, In Fig. 1 the products zg, for 0<z 3
needs to be computed

Since g, = g, , it is necessary to compute only 28, 28, and
z8,. Let the products zg, for 0 <7 < 2 be represented in the
dual basis. By Corrollary 2 zg, can be expressed in the dual
basis as

k
2, ) (2)
3
z) g = ® (@] A, (8
k=0
g, T (2)

where T¢%) (z) = Tr(zg,0%) is the kth coefficient (or kth bit)
of zg,for0<i<2and 0 Sk <3.

The present problem is to express i(k)(z) recursively in
terms of T, (e=1)(z) for 1 <k < 3. Initially for & =0,

7] I~ 7 F' N ™ 7

rTgo) ) Tr(zg,) Tr(za%) z,
Tl(o) @|= |Treg)| = [Tr@d) | = |z,
_TZ(O) (z)J _Tr(zgz)_ _Tr(zoc) | |7, |

€

where TR (z0f) = Tr((z, A, +2, N, + 2\, +z,7)of) = z,for 0
< j < 3. Equation (9) can be expressed in a matrlx form as
follows:

fTéO) @ | (1000 FZO‘-
79 (2) = (0001 z, (10)
_T2<°> @ 0100] |z

%

The above matrix is the 3 X 4 binary mapping matrix of the
problem.

To compute Ti(") (z) for £ > 0, observe that Ti(k)(z) =
Trgcaz?g ak-1) = 7(*-1)(az), Hence T )(z) is obtained from
T( (z) by replacing z by y = az. Letaz = =y =yod, tY A
+y WM TV A, where y, =Tr(ya™) = Tr(zozm“) forO <m
<3 Then T(") is obtained from T("‘l) by replacing z , by ¥
=Tr(zo)=z,,z, byy = = Tr(za?) = zy,2, by y, *Tr(zoz?') 24
and z, byys Tr(za“l) Tr(z(a+ 1)) = z0 +3z,.

To recapitulate zg; = TN, + TN, + T, + Tl.(3))\3,
where 0 <i<3andz=zyA, + 2,4, + 2,8, +2,A;, can be
computed by Berlekamp’s bit-serial multiplier algorithm gs
follows:

(1) Initially for & = 0, compute T {2(z), T (z) and
T(O)(Z) by Eq. (10). Also T(°)(z) T(O)(z)

(2) Fork=1,2,3, compute 79 (z) by

Ti(k) @) = Tt(k_l) »)

where 0 <i<3andy = oz =Y ?\0 +y1)\l +y27\2+
y37\3 with Vo2 Y =2y, =z andy, =z, vz, =

where T, = z, + z; is the feedback term of the
aIgonthm

The above example illustrates Berlekamp’s bit-serial multi-
plier algorithm. This algorithm developed in Refs. 4 and 5
requires shifting and XOR operations only. Berlekamp’s dual
basis RS-encoder is well-suited to a pipeline structure which
can be implemented in VLSI design. The same procedure
extends similarly to the design of a (255, 223) RS-encoder
over GF(28).

IV. A VLSI Architecture of a (255, 223)
RS-Encoder with Dual-Basis Multiplier

In this section an architecture is designed to implement
(255, 223) RS-encoder using Berlekamp’s multiplier algorithm.
The circuit is a direct mapping from an encoder using
Berlekamp’s bit-serial algorithm as developed in the previous
sections to an architectural design. This architecture can be
realized quite readily on a single NMOS VLSI chip.

Let GF(28) be generated by a, where a is a root of a
primitive irreducible polynomial f(x) = x8 + x7 + x2 + x + 1
over GF(2). The normal basis of this field is {1, &, o2, &®, a?,
o, of, o}, The representations of this field in both the
normal basis and its dual basis are tabulated in Appendix A.
From Corrollary 1 the coefficients of a field element &/ can be
obtained from z, = Tr(o/*¥) for 0 <k <7, where of =z A,
toeet 27)\7. From Table A-1 in Appendix A, the dual basis
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{?\8, A+, A} of the normal basis is the ordered set {a%9,
al97 q203 202 4201 (200 ;199 4100}

It was mentioned previously that vy in Eq. (2) can be chosen
to simplify the binary mapping matrix. Two binary matrices,
one for the primitive element = a!! and the otlier for v = q,
were computed. It was found that the binary mapping matrix
for v = a!! had a smaller number of 1’s. Hence this binary
mapping matrix was used in the design. For this case the
generator polynomial g(x) of the RS-encoder over GF(28) was
given by

143 . 32 :
g0) = J[ &-o"y =3 gx (11)

j=112 =0

= = = = 249 = =059 o =
whe6r: 8o =832 1’51 g3 =0 :1?2 830 = ’lfgg £29
T, 8 T8y T, 85 T8y TUT, 8 Ty T, 80 =
8ys = 0%, g5 =8y, =077, g5 = g3 =030, 8,5 =gy, =0},
= = 213 = = 50 = = 66 =
811 g210 Q7,813 T8y T U 'g122 819 T @7, 814
813 =010 g5 =81, = a5, and g4 = 0?4,

The binary mapping matrix for the coefficients of the
generator polynomial in Eq. (11) is computed and shown in
Appendix B. The feedback term T;in Berlekamp’s algorithm is
found in this case to be:

T, = Tr(asz? = Tr((@" +o® ta+1)s) =z +z2, +z,+z,

(12)

In the following a VLSI chip architecture is designed to
realize. a (255, 223) RS-encoder using the above parameters
and Berlekamp’s algorithms, An overall block diagram of this
chip is shown in Fig. 2. In Fig. 2 VDD and GND are power
pins. CLK is a clock signal, which in general is a periodic
square wave. The information symbols are fed into the chip
from the data-in pin DIN bit-by-bit. Similarly the encoded
codeword is transmitted out of the chip from the data-out pin
DOUT sequentially. The control signal LM (load mode) is set
to 1 (logic 1) when the information symbols are loaded into
the chip. Otherwise, LM is set to 0.

The input data and LM signals are synchronized by the
CLK signal, while the operations of the circuit and output data
signal are synchronized by two nonoverlapping clock signals
¢1 and ¢2. To save space, dynamic registers are used in this
design. A logic diagram of a 1-bit dynamic register with reset is
shown in Fig. 3. The timing diagram of CLK, ¢1, ¢2, LM, DIN
and DOUT signals are shown in Fig. 4. The delay of DOUT
with respect to DIN is due to the input and output flip-flops.
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Figure 5 shows the block diagram of a (255, 223)
RS-encoder over GF(2%) using Berlekamp’s bit-serial multiplier
algorithm. The circuit is divided into five units. The circuits in
each unit are discussed in the following:

(1) Product Unit: The Product Unit is used to compute Ty
Ty, +, T,. This circuit is realized by a Program-
mable Logic Array (PLA) circuit [6]. Since Ty =T},
Ty =Ty, ", Ty5=Tyq,0nly Tp, Tg;,"*, Ty, and
T)s are actually implemented in the PLA circuit.
Ty, -+, Ty5 are connected directly to T3, *+, Ty,,
respectively. Over other circuits a PLA circuit has the
advantage of being easy to reconfigure,

(2) Remainder Unit: The Remainder Unit is used to store
the coefficients of the remainder during the division
process. In Fig. 5, §; for 0 < i < 30 are 8-bit shift
registers with reset. The addition in the circuit is a
modulo 2 addition or Exclusive-OR operation. While
€3, is being fed to the circuit, c,, is being computed
and transmitted sequentially from the circuit. Simul-
taneously ¢; is computed and then loaded into S, for
0 <i<30.Then cgy," ", ¢, are transmitted out of
the encoder bit-by-bit.

(3) Quotient Unit: In Fig. 5, Q@ and R represent a 7-bit
shift register with reset and an 8-bit shift register with
reset and parallel load, respectively. R and @ store the
currently operating coefficient and the next coefficient
of the quotient polynomial, respectively. A logic
diagram of register R is shown in. Fig. 6. z, is loaded
into R, every eight clock cycles, where 0 < i <7.
Immediately after all 223 information symbols are fed
into the circuit, the control signal SL changes to.
logic 0. Thenceforth the contents of Q and R are zero
so that the check symbols in the Remainder Unit
sustain their values.

(4) I/O Unit: This unit handles the input/output opera-
tions. In Fig. 5 both Fy and F , are flip-flops. A pass
transistor controlled by ¢1 is inserted before F, for the
purpose of synchronization. Control signal SL selects
whether a bit of an information symbol or a check
symbol is to be transmitted.

(5) Control Unit: The Control Unit generates the necessary
control signals. This unit is further divided into 3
portions, as shown in Fig. 7. The two-phase clock
generator circuit in Ref. 6 is used to convert a clock
signal into two nonoverlapping clock signals ¢1 and ¢2.
In Fig. 8 is shown a logic diagram of the circuit for
generating control signals START and SL. Control
signal START resets all registers and the divide-by-8




counter before the encoding process begins. Control
signal LD is simply generated by a divide-by-8 counter
to load the zi’s into the R l’s in parallel.

Since a codeword contains 255 symbols, the computation
of a complete encoded codeword requires 255 “symbol
cycles.” A symbol cycle is the time interval for executing a
complete cycle of Berlekamp’s algorithm. Since a symbol has 8
bits, a symbaol cycle contains 8 “bit cycles.” A bit cycle is the
time interval for executing one step in Berlekamp’s algorithm.
In this design a bit cycle requires a period of the clock cycle.

The layout design of this (255, 223) RS-encoder is shown
in Fig. 9. Before the design of the layout each circuit was
simulated on a general-purpose computer by using SPICE (a
transistor-level circuit simulation program) (Ref. 7). The cir-

cuit requires about 3000 transistors, while a similar JPL desfn
requires 30 CMOS IC chips (Ref.'5). This RS-encoder design
will be fabricated and tested in the near future.

V. Concluding Remarks

A VLSI structure is developed for a Reed-Solomon encoder
using Berlekamp’s bit-serial multiplier algorithm. This struc-
ture is both regular and simple.

The circuit in Fig. 2 can be modified easily to encode an RS
code with a different field representation and different param-
eters other than those used in Section IV. Table 2 shows the
primary modifications needed in the circuit to change a given
parameter.
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Table 1. Representations of elements over GF(2*)
generated by o* = o + 1

PoYver Elements in Tr(al) Elements in
7 normal base dual base
ade2alef 24%,12,%3
* 0000 0 0000
0 0001 0 0001 Ay
1 0010 0 0010 A,
2 0100 0 0100 Ay
3 1000 1 1001
4 0011 0 0011
5 0110 0 0110
6 1100 1 1101
7 1011 1 1010
8 0101 0 0101
9 1010 1 1011
10 0111 0 0111
11 1110 1 1111
12 1111 1 1110
13 1101 1 1100
14 1001 1 1000 Ay

Table 2. The primary modifications of the encoder circuit
inFig. 2 needed to change a parameter

The circuits of Fig. 2
that require modification

The value
Parameter used for New
to be changed  the circuit value
in Fig. 2
. Generator Eq. (8) gx)
polynomial
. The finite GF2%  GFER™)
field used
. Error- 16 t
correcting
capability
. Number of 223 k
information
symbols

The PLA of the Product
Unit needs to be
changed

All registers are m-bit
resistors, except Q is a
(m - 1)-bit register. A
divide-by-m counter is
used, (The generator
polynomial may not be
changed.)

2¢-2 shift registers are
required in the Re-
mainder Unit. (The
generator polynomial is
also changed.)

None is changed, since
k is-implicitly contained
in the control signal LM
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Appendix A

In this appendix all 256 elements in GF(28) are listed in Table A-1. These field elements are expressed in both the normal basis
and its dual basis.

Table A-1. Representations of elements in GF(2°)

Power .Elements . Elements Power Elements . Elements
. in normal Ti(e!) in dual . in normal Tr(e!) in dual
! base base / base base
* 00000000 0 00000000 35 11101000 0 00110111
0 00000001 0 01111111 36 01010111 0 01101110
1 00000010 1 11111111 37 10101110 1 11011100
2 00000100 i 11111110 38 11011011 1 10111000
3 00001000 1 11111101 39 00110001 0 01110000
4 00010000 1 11111010 40 01100010 1 11100000
S 00100000 1 11110101 41 11000100 1 11000001
6 01000000 1 11101010 42 00001111 1 10000011
7 10000000 1 11010101 43 00011110 0 00000110
8 10000111 1 10101011 44 00111100 0 00001100
9 10001001 0 01010111 45 01111000 0 00011000
10 10010101 1 10101110 46 11110000 0 00110000
11 10101101 0 01011100 47 01100111 0 01100001
12 11011101 1 10111001 48 11001110 1 11000011
13 00111101 0 01110011 49 00011011 1 10000111
14 01111010 1 11100111 50 00110110 0 00001110
15 11110100 1 11001110 51 01101100 0 00011100
16 01101111 1 10011100 52 11011000 0 00111000
17 11011110 0 00111001 53 00110111 0 01110001
18 00111011 0 01110010 54 01101110 1 11100011
19 01110110 1 11100100 55 11011100 1 11000110
20 11101100 1 11001001 56 00111111 1 10001100
21 01011111 i 10010011 57 01111110 0 00011001
22 10111110 0 00100110 58 11111100 0 00110011
23 11111011 0 01001101 59 0111111t 0 01100110
24 01110001 1 10011010 60 11111110 1 11001100
25 11100010 0 00110101 61 01111011 1 10011000
26 01000011 0 01101010 62 11110110 0 00110001
27 10000110 1 11010100 63 01101011 0 01100010
28 10001011 1 10101000 64 11010110 1 11000100
29 10010001 0 01010000 65 00101011 1 10001000
30 10100101 1 10100001 66 01010110 0 00010001
31 11001104 0 01000011 67 10101100 0 00100011
32 0001110t 1 10000110 68 11011111 0 01000110
33 00111010 0 00001101 69 00111001 1 10001101
34 01110100 0 00011011 70 01110010 0 00011010
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Table A-1 (contd)

Power Elements , Elements Power Elements . Elements
; in normal Tr(e)) in dual i in normat Tr(a!) in dual
base base base base
71 11100100 0 00110100 112 01000111 1 10010100
72 01001111 0 01101001 113 10001110 0 00101001
73 10011110 1 11010011 114 10011011 0 01010010
74 10111011 1 10100111 115 10110001 1 10100101
75 11110001 0 01001111 116 11100101 0 01001011
76 01100101 1 10011110 117 01001101 1 10010110
77 11001010 0 00111101 118 10011010 0 00101101
78 00010011 0 01111010 119 10110011 0 01011010
79 00100110 1 11110100 120 11100001 1 10110101
80 01001100 1 11101001 121 01000101 0 01101011
81 10011000 1 11010010 122 10001010 1 11010111
82 10110111 1 10100100 123 10010011 1 10101111
83 11101001 0 01001000 124 10100001 0 01011111
84 01010101 1 10010001 125 11000101 1 10111110
85 10101010 0 001006010 126 00001101 0 01111100
86 11010011 0 01000101 127 00011010 1 11111000
87 00100001 1 10001010 128 00110100 1 11110001
88 01000010 0 00010101 129 01101000 1 11100010
89 10000100 0 0010101t 130 11010000 1 11000101
90 10001111 0 01010110 131 00100111 1 10001011
91 10011001 1 10101101 132 01001110 0 00010110
92 10110101 0 01011011 133 10011100 0 00101100
93 11101101 T 10110110 134 10111111 0 01011001
94 01011101 0 01101100 135 11111001 1 10110010
95 10111010 1 11011000 136 01110101 0 01100100
96 11110011 1 10110000 137 11101010 1 11001000
97 01100001 0 01100000 138 01010011 1 10010000
98 11000010 1 11000000 139 10100110 0 00100001
99 00000011 1 10000000}\D 140 11001011 0 01000010
100 00000110 0 00000001 A, 141 00010001 1 10000101
101 00001100 0 00000011 142 00100010 0 00001010
102 00011000 0 00000111 143 01000100 0 00010100
103 00110000 0 00001111 144 10001000 0 00101000
104 01100000 0 00011111 145 10010111 0 01010001
105 11000000 0 00111111 146 10101001 1 10100010
106 00000111 0 © 01111110 147 11010101 0 01000100
107 00001110 1 11111100 148 00101101 1 10001001
108 00011100 1 11111001 149 01011010 0 00010010
109 00111000 1 11110010 150 10110100 0 00100100
110 01110000 1 11100101 151 11101111 0 01001001
111 11100000 1 11001010 152 01011001 1 10010010
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Table A-1 (contd)

Power Elements . Elements Power Elements . Elements
i in normal Tre/) in dual p in normal Tr(e!) in dual
base base base base
153 10110010 0 00100101 194 01001001 0 01101000
154 11100011 0 01001010 195 10010010 1 11010000
155 01000001 1 10010101 196 10100011 1 10100000
156 10000010 0 00101010 197 11000001 0 01000000 A,
157 10000011 0 01010101 198 00000101 1 10000001
158 10000001 1 10101010 199 00001010 0 OOOOOOIOA6
159 10000101 0 01010100 200 00010100 0 00000100 A,
160 10001101 1 10101001 201 00101000 0 00001000 A,
161 10011101 0 01010011 202 01010000 0 00010000 A4
162 10111101 1 10100110 203 10100000 0 00100000 A,
163 11111101 0 01001100 204 11000111 0 01000001
164 01111101 1 10011001 205 00001001 1 10000010
165 11111010 0 00110010 206 00010010 0 00000101
166 01110011 0 01100101 207 00100100 0 00001011
167 11100110 1 11001011 208 01001000 0 00010111
168 01001011 1 10010111 209 10010000 0 00101111
169 10010110 0 00101110 210 10100111 0 01011110
170 10101011 0 01011101 211 11001001 1 10111101
171 11010001 1 10111010 212 00010101 0 01111011
172 00100101 0 01110100 213 00101010 1 11110111
173 01001010 1 11101000 214 01010100 1 11101110
174 10010100 1 11010001 215 10101000 1 11011101
175 10101111 1 10100011 216 11010111 1 10111011
176 11011001 0 01000111 217 00101001 0 01110111
177 00110101 1 10001110 218 01010010 1 11101111
178 01101010 0 00011101 219 10100100 1 11011110
179 11010100 0 00111011 220 11001111 1 10111100
180 00101111 0 01110110 221 00011001 0 01111000
181 01011110 1 11101100 222 00110010 1 11110000
182 10111100 1 11011001 223 01100100 1 11100001
183 11111111 1 10110011 224 11001000 1 11000010
184 01111001 0 01100111 225 00010111 1 10000100
185 11110010 1 11001111 226 00101110 0 00001001
186 01100011 1 10011111 227 01011100 0 00010011
187 11000110 0 00111110 228 10111000 0 00100111
188 00001011 0 01111101 229 11110111 0 01001110
189 00010110 1 11111011 230 01101001 1 10011101
190 00101100 1 11110110 231 11010010 0 00111010
191 01011000 1 11101101 232 00100011 0 01110101
192 10110000 1 11011010 233 01000110 1 11101011
193 11100111 1 10110100 234 10001100 1 11010110
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Table A-1 (contd)

Power Elements . Elements Power Elements . E}ements
; in normal Tre') in dual A in normal Tr(e!) in dual
7 base base ! base base
235 10011111 1 10101100 245 01111100 1 11100110
236 10111001 0 01011000 246 11111000 1 11001101
237 11110101 1 10110001 247 01110111 1 10011011
" 238 01101101 0 01100011 248 11101110 0 00110110
239 11011010 1 11000111 249 01011011 0 01101101
240 00110011 1 10001111 250 10110110 1 11011011
241 01100110 0 00011110 251 11101011 1 10110111
242 11001100 0 00111100 252 01010001 0 01101111
243 00011111 0 01111001 253 10100010 1 11011111
244 00111110 1 11110011 254 11000111 1 10111111
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Appendix B

all of the (255, 223) RS-encoder is given by

The binary mapping matrix for y

(= T T T T ST o
N NNNNNNDN

N BN KMRBMBMBEBMKN

o 2 T 9o 2 =m0y
N RN MKKBRBMBMNK
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